Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Author index

Page Path
HOME > Browse Articles > Author index
Search
YeSeul Lim 1 Article
Fabrication and Characterization of Highly Reactive Al/CuO Nano-composite using Graphene Oxide
YeSeul Lim
J Powder Mater. 2019;26(3):220-224.   Published online June 1, 2019
DOI: https://doi.org/10.4150/KPMI.2019.26.3.220
  • 42 View
  • 1 Download
  • 1 Citations
AbstractAbstract PDF

The aluminum (Al)/copper oxide (CuO) complex is known as the most promising material for thermite reactions, releasing a high heat and pressure through ignition or thermal heating. To improve the reaction rate and wettability for handling safety, nanosized primary particles are applied on Al/CuO composite for energetic materials in explosives or propellants. Herein, graphene oxide (GO) is adopted for the Al/CuO composites as the functional supporting materials, preventing a phase-separation between solvent and composites, leading to a significantly enhanced reactivity. The characterizations of Al/CuO decorated on GO(Al/CuO/GO) are performed through scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy mapping analysis. Moreover, the functional bridging between Al/CuO and GO is suggested by identifying the chemical bonding with GO in X-ray photoelectron spectroscopy analysis. The reactivity of Al/CuO/GO composites is evaluated by comparing the maximum pressure and rate of the pressure increase of Al/CuO and Al/CuO/GO. The composites with a specific concentration of GO (10 wt%) demonstrate a well-dispersed mixture in hexane solution without phase separation.

Citations

Citations to this article as recorded by  
  • Controlling Particle Size of Recycled Copper Oxide Powder for Copper Thermite Welding Characteristics
    Hansung Lee, Minsu Kim, Byungmin Ahn
    journal of Korean Powder Metallurgy Institute.2023; 30(4): 332.     CrossRef

Journal of Powder Materials : Journal of Powder Materials